Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

Identifieur interne : 000496 ( Main/Exploration ); précédent : 000495; suivant : 000497

Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

Auteurs : Jiao Wu [République populaire de Chine] ; Yali Zhang ; Ling Yin ; Junjie Qu ; Jiang Lu

Source :

RBID : pubmed:25154381

Descripteurs français

English descriptors

Abstract

Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

DOI: 10.1007/s10142-014-0392-1
PubMed: 25154381


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.</title>
<author>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
</author>
<author>
<name sortKey="Qu, Junjie" sort="Qu, Junjie" uniqKey="Qu J" first="Junjie" last="Qu">Junjie Qu</name>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25154381</idno>
<idno type="pmid">25154381</idno>
<idno type="doi">10.1007/s10142-014-0392-1</idno>
<idno type="wicri:Area/Main/Corpus">000492</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000492</idno>
<idno type="wicri:Area/Main/Curation">000492</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000492</idno>
<idno type="wicri:Area/Main/Exploration">000492</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.</title>
<author>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
</author>
<author>
<name sortKey="Qu, Junjie" sort="Qu, Junjie" uniqKey="Qu J" first="Junjie" last="Qu">Junjie Qu</name>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
</author>
</analytic>
<series>
<title level="j">Functional & integrative genomics</title>
<idno type="eISSN">1438-7948</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (genetics)</term>
<term>Cold Temperature (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Disease Resistance (immunology)</term>
<term>Down-Regulation (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Vitis (genetics)</term>
<term>Vitis (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Basse température (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Liaison génétique (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (génétique)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Résistance à la maladie (immunologie)</term>
<term>Vitis (génétique)</term>
<term>Vitis (immunologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Acclimatization</term>
<term>Disease Resistance</term>
<term>Down-Regulation</term>
<term>Host-Pathogen Interactions</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acclimatation</term>
<term>Interactions hôte-pathogène</term>
<term>Régulation négative</term>
<term>Résistance à la maladie</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Résistance à la maladie</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Disease Resistance</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genetic Linkage</term>
<term>Molecular Sequence Annotation</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Annotation de séquence moléculaire</term>
<term>Basse température</term>
<term>Gènes de plante</term>
<term>Liaison génétique</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25154381</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-7948</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Functional & integrative genomics</Title>
<ISOAbbreviation>Funct Integr Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.</ArticleTitle>
<Pagination>
<MedlinePgn>741-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10142-014-0392-1</ELocationID>
<Abstract>
<AbstractText>Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jiao</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yali</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qu</LastName>
<ForeName>Junjie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Funct Integr Genomics</MedlineTA>
<NlmUniqueID>100939343</NlmUniqueID>
<ISSNLinking>1438-793X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="Y">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25154381</ArticleId>
<ArticleId IdType="doi">10.1007/s10142-014-0392-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1750-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Aug;111(4):1271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Nov;236(5):1485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22798060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Sep 22;9:121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Oct 28;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Aug 8;352(6335):524-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1865907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Oct;19(10):1825-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Feb;21(4):729-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S401-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Jun;24(4):216-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15719238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1251-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Feb 13;580(4):1183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2005 Apr;9(2):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15599780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Jan;30(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20967449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37636-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Oct 15;167(15):1307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20580122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):626-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jul;27(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Mar;1794(3):512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19100869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cryobiology. 1987 Aug;24(4):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3621976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Jan;239(1):61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24068300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Jul;112(3):359-371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11473693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(3):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Aug;5(8):948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Jun;10(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2004 Dec;29(4):449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15625401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 23;103(21):8281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2006 Sep;119(5):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1527-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jan 25;10:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 14;313(5784):220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Feb;164(2):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 May 1;14(9):1119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15079051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Dec;49(12):6020-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):21002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Dec;197:70-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23116673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 4;273(49):32739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9830017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Mar;21(3):972-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Mar;104(3):971-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Sep;68(1-2):17-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18496756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):1077-1083</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Sep;62(1-2):83-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Jan;10(1):105-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Oct;53(3):383-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jul;46(5):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109 (3):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jul;24(7):2898-916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Mar;7(3):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Sep;13(9):2063-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2004;2004(5):338-342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Nov;41(11):1229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Mar;267(5):1313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10691968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):969-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21395887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 30;272(22):14412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9162080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1410-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1227-1235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Mar;8(3):489-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8721751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1971 Jan;47(1):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 Aug;136(16):2675-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):351-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Sep;226(4):1007-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17549515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Oct;7(4):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):224-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Feb;9(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18633655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(3):399-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Dec;36(21):e141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(9):2713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):968-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16552595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2009 Jan;11(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):905-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<name sortKey="Qu, Junjie" sort="Qu, Junjie" uniqKey="Qu J" first="Junjie" last="Qu">Junjie Qu</name>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000496 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000496 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25154381
   |texte=   Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25154381" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020